|
 |
Photoelectrochemical
Performance of Anodized Niobium for Hydrogen Production.
J. Adamski, L. M. Antonini,
T. V. Iser, M. R. O. Vega, C. Aguzzoli and C. F. Malfatti
2018/04/20
|

Abstract
Nanoporous oxide on valve metals has received
incredible attention due to its high surface area. The most studied nanoporous
oxide is TiO2; however niobium-based oxide presents electronic, textural
and catalytic features similar to those of TiO2, with the advantage of
Brazil having the biggest niobium reserve. Since the beginning of this
century, anodization has emerged as one of the most effective techniques
for the fabrication of functional nanoporous oxide. In this study we evaluated
two anodization parameters: fluoride ion concentration in the electrolytic
bath and heat treatment after anodization. The samples were analysed morphologically
by scanning electron microscopy (SEM). The structural characterization
was performed by X-ray diffraction and the photoelectrochemical performance
was monitored by photocurrent assay. The low fluoride concentration yielded
an anodized niobium surface with morphology similar to nanotubes. Heat
treatment induced the formation of Nb2O5 with a crystal structure compared
to the non-treated samples, which were amorphous. The anodized niobium
obtained in a bath with low fluoride concentration showed better photoelectrochemical
performance compared to the anodized sample obtained in a bath with high
fluoride concentration.
Published in: Renewable Energy
& Power Quality Journal (RE&PQJ, Nº. 16) |
Pages: 242-246 |
Date of Publication: 2018/04/20 |
ISSN: 2172-038X |
Date of Current Version:2018/03/23 |
REF: 273-18 |
Issue Date: April 2018 |
DOI:10.24084/repqj16.273 |
Publisher: EA4EPQ |
Authors and affiliations
J. Adamski(1), L. M. Antonini(1), T. V. Iser(1), M.
R. O. Vega(1), C. Aguzzoli(2) and C. F. Malfatti(1)
1. LAPEC/PPGE3M, Department of Metallurgy, Federal University of Rio Grande
do Sul. Porto Alegre, RS (Brazil)
2. Center of Exact Sciences and Technology, University of Caxias do Sul,
RS, Brazil
Key words
Anodization, niobium, Nb2O5, nanotubes, photoelectrochemical.
References
[1] Z. Zhang, Y., G, Shi, Y. Fang, L. Linhong, H. Ding
and L. Jin, Environmental Science and Technology 2007. 41 62596263.
[2 ] G. K. Mor, K. O. Varghese, M. Paulose, K. Shankar, C. A. Grimer,
Sol. Energy Mater. Sol. Cells, 2006. 90 20112075.
[3] P. Roy, S. Berger and P. Schmuki, Angew. Chem., Int. Ed., 2011, 50,
29042939.
[4] O. K. Varghese, M. Pauloseand C. A. Grimes, Nat. Nanotechnol., 2009,
4, 592597.
[5] V. Galstyan, A. Vomiero, I. Concina, A. Braga,M. Brisotto, E. Bontempi,
G. Faglia and G. Sberveglieri, Small, 2011, 7, 24372442.
[6] V. Galstyan, E. Comini, G. Faglia, A. Vomiero, L. Borgese, E. Bontempi
and G. Sberveglieri, Nanotechnology, 2012, 23, 235706.
[7] N. A. Kyeremateng, F. Vacandio, M. T. Sougrati, H. Martinez, J. C.
Jumas, P. Knauth and T. Djenizian, J. Power Sources, 2013, 224, 269277.
[8] B. L. Ellis, P. Knauth and T. Djenizian, Adv. Mater., 2014, 26, 33683397.
[9] P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W.
Zhang, M. Li, H. Yao and D. Wu, Cryst Eng Comm, 2013, 15, 75487555.
[10] R. V. Goncalves, P. Migowski, H. Wender, A. F. Feil, M. J. M. Zapata,
S. Khan, F. Bernardi, G. M. Azevedo and S. R. Teixeira, CrystEngComm,
2014, 16, 797804.
[11] A. M. M. Jani, D. Losic and N. H. Voelcker, Prog. Mater. Sci., 2013,
58, 636704.
[12] W. Lee, R. Scholz and U. Goesele, Nano Letters, 2008, 8, 21552160.
[13] V. Galstyan, E. Comini, G. Faglia and G. Sberveglieri, Sensors, 2013,
13, 1481314838.
[14] R. F. Brandão, R. L. Quirino, V. M. Mello, A. P. Tavares,
A. C. Peres, F. Guinhos, J. C. Rubim and P. A. Z. Suarez, J. Braz. Chem.
Soc., 2009, 20, 954-966.
[15] K. Nakajima, Y. Baba, R. Noma, M. Kitano, J. N. Kondo, S. Hayashi
and M. Hara, J. Am. Chem. Soc., 2011, 133, 4224-4227.
[16] K. Yamashita, M. Hirano, K. Okumura and M. Niwa, Catalysis Today,
2006, 118, 385-391.
[17] D. A. G. Aranda, A. D. Ramos, F. B. Passos and M. Schmal, Catalysis
Today, 1996, 28, 119-125.
[18 ] X. Liu, R. Yuan, Y. Liu, S. Zhu, J. Lin and X. Chen, New J. Chem.,
2016, 40, 62766280.
[19 ] V. Galstyan, E. Comini, G. Faglia and G. Sberveglieri, CrystEngComm,
2014, 16, 1027310279.
[20 ] L. Pei, M. Yang, D. Zhang, L. Zhang, P. Chen, Y. Song, RSC Adv.,
2015, 5, 91389142.
[21] J. Z. Ou, R. A. Rani, M.-H. Ham, M. R. Field, Y. Zhang, H. Zheng,
P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R. B. Kanee and K. Kalantar-Zadeh,
ACS Nano, 2012, 6, 40454053.
[22] J. Z. Ou, R. A. Rani, M.-H. Ham, M. R. Field, Y. Zhang, H. Zheng,
P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R. B. Kaner and K. Kalantar-zadeh,
ACS Nano, 2012, 6, 57375737.
[23] Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J.
Guan and H. Gu, Int. J. Hydrogen Energy, 2012, 37, 45264532.
[24] C. Yan and D. Xue, Adv. Mater., 2008, 20, 10551058.
[25] I. Sieber, H. Hildebrand, A. Friedrich and P. Schmuki, Electrochem.
Commun., 2005, 7, 97100.
[26] K. Lee, Y. Yang, M. Yang and P. Schmuki, Chem. Eur. J., 2012,
18, 95219524.
[27] L. Assaud, J. Schumacher, A. Tafel, S. Bochmann, S. Christiansen
and J. Bachmann, Systematic increase of electrocatalytic turnover at nanoporous
platinum surfaces prepared by atomic layer deposition, J. Mater. Chem.
A, 2015, 3, 8450-8458.
[28] V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri. Synthesis of
self-ordered and well-aligned Nb2O5 nanotubes, CrystEngComm, v. 16, pp.
10273-10279, 2014.
[29] W. Wei, K. Lee, S. Shaw, P. Schmuki. Anodic formation of high aspect
ratio, self-ordered Nb2O5 nanotubes. Chem. Commun., v. 48, 2012, pp. 4244-4246,
2012.
[30] X. Liu, R. Yuan, Y. Liu, S. Zhu, J. Lin, X. Chen. Niobium pentoxide
nanotube poder for efficient dye-sensitized solar cells. New J. Chem.,
v. 40, pp. 6276-6280, 2016.
[31] X. Chan, T. Pu, X. Chen, A. James, J. Lee, J. B. Parise, D. H. Kim,
T. Kim. Effect of niobium oxide phase on the furfuryl alcohol dehydration.
Catalysis Communications, v. 97, pp. 65-69, 2017.
[32] L. M. Antonini. Superfícies nanoestruturadas de titânio
e tratamento superficial com filmes Diamond Like Carbon (DLC). Dissertação
Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil,
2012.
[33 ] H. Liu, N. Gao, M. Liao and X. Fang, Hexagonal-like Nb2O5 nonoplates-based
photodetectors and photocatalyst with high performances, Scientific Reports,
5: 7716, 2015.
[34 ] Fang, X. S. et al. New ultraviolet photodetector based on individual
Nb2O5 nanobelts. Adv. Funct. Mater. 21, 39073915, 2011.

|
|