Photoelectrochemical Performance of Anodized Niobium for Hydrogen Production.

J. Adamski, L. M. Antonini, T. V. Iser, M. R. O. Vega, C. Aguzzoli and C. F. Malfatti




Nanoporous oxide on valve metals has received incredible attention due to its high surface area. The most studied nanoporous oxide is TiO2; however niobium-based oxide presents electronic, textural and catalytic features similar to those of TiO2, with the advantage of Brazil having the biggest niobium reserve. Since the beginning of this century, anodization has emerged as one of the most effective techniques for the fabrication of functional nanoporous oxide. In this study we evaluated two anodization parameters: fluoride ion concentration in the electrolytic bath and heat treatment after anodization. The samples were analysed morphologically by scanning electron microscopy (SEM). The structural characterization was performed by X-ray diffraction and the photoelectrochemical performance was monitored by photocurrent assay. The low fluoride concentration yielded an anodized niobium surface with morphology similar to nanotubes. Heat treatment induced the formation of Nb2O5 with a crystal structure compared to the non-treated samples, which were amorphous. The anodized niobium obtained in a bath with low fluoride concentration showed better photoelectrochemical performance compared to the anodized sample obtained in a bath with high fluoride concentration.

Published in: Renewable Energy & Power Quality Journal (RE&PQJ, Nº. 16)
Pages: 242-246 Date of Publication: 2018/04/20
ISSN: 2172-038X Date of Current Version:2018/03/23
REF: 273-18 Issue Date: April 2018
DOI:10.24084/repqj16.273 Publisher: EA4EPQ

Authors and affiliations

J. Adamski(1), L. M. Antonini(1), T. V. Iser(1), M. R. O. Vega(1), C. Aguzzoli(2) and C. F. Malfatti(1)
1. LAPEC/PPGE3M, Department of Metallurgy, Federal University of Rio Grande do Sul. Porto Alegre, RS (Brazil)
2. Center of Exact Sciences and Technology, University of Caxias do Sul, RS, Brazil

Key words

Anodization, niobium, Nb2O5, nanotubes, photoelectrochemical.


[1] Z. Zhang, Y., G, Shi, Y. Fang, L. Linhong, H. Ding and L. Jin, Environmental Science and Technology 2007. 41 6259–6263.
[2 ] G. K. Mor, K. O. Varghese, M. Paulose, K. Shankar, C. A. Grimer, Sol. Energy Mater. Sol. Cells, 2006. 90 2011–2075.
[3] P. Roy, S. Berger and P. Schmuki, Angew. Chem., Int. Ed., 2011, 50, 2904–2939.
[4] O. K. Varghese, M. Pauloseand C. A. Grimes, Nat. Nanotechnol., 2009, 4, 592–597.
[5] V. Galstyan, A. Vomiero, I. Concina, A. Braga,M. Brisotto, E. Bontempi, G. Faglia and G. Sberveglieri, Small, 2011, 7, 2437–2442.
[6] V. Galstyan, E. Comini, G. Faglia, A. Vomiero, L. Borgese, E. Bontempi and G. Sberveglieri, Nanotechnology, 2012, 23, 235706.
[7] N. A. Kyeremateng, F. Vacandio, M. T. Sougrati, H. Martinez, J. C. Jumas, P. Knauth and T. Djenizian, J. Power Sources, 2013, 224, 269–277.
[8] B. L. Ellis, P. Knauth and T. Djenizian, Adv. Mater., 2014, 26, 3368–3397.
[9] P. Lv, W. Fu, H. Yang, H. Sun, Y. Chen, J. Ma, X. Zhou, L. Tian, W. Zhang, M. Li, H. Yao and D. Wu, Cryst Eng Comm, 2013, 15, 7548–7555.
[10] R. V. Goncalves, P. Migowski, H. Wender, A. F. Feil, M. J. M. Zapata, S. Khan, F. Bernardi, G. M. Azevedo and S. R. Teixeira, CrystEngComm, 2014, 16, 797–804.
[11] A. M. M. Jani, D. Losic and N. H. Voelcker, Prog. Mater. Sci., 2013, 58, 636–704.
[12] W. Lee, R. Scholz and U. Goesele, Nano Letters, 2008, 8, 2155–2160.
[13] V. Galstyan, E. Comini, G. Faglia and G. Sberveglieri, Sensors, 2013, 13, 14813–14838.
[14] R. F. Brandão, R. L. Quirino, V. M. Mello, A. P. Tavares, A. C. Peres, F. Guinhos, J. C. Rubim and P. A. Z. Suarez, J. Braz. Chem. Soc., 2009, 20, 954-966.
[15] K. Nakajima, Y. Baba, R. Noma, M. Kitano, J. N. Kondo, S. Hayashi and M. Hara, J. Am. Chem. Soc., 2011, 133, 4224-4227.
[16] K. Yamashita, M. Hirano, K. Okumura and M. Niwa, Catalysis Today, 2006, 118, 385-391.
[17] D. A. G. Aranda, A. D. Ramos, F. B. Passos and M. Schmal, Catalysis Today, 1996, 28, 119-125.
[18 ] X. Liu, R. Yuan, Y. Liu, S. Zhu, J. Lin and X. Chen, New J. Chem., 2016, 40, 6276—6280.
[19 ] V. Galstyan, E. Comini, G. Faglia and G. Sberveglieri, CrystEngComm, 2014, 16, 10273–10279.
[20 ] L. Pei, M. Yang, D. Zhang, L. Zhang, P. Chen, Y. Song, RSC Adv., 2015, 5, 9138–9142.
[21] J. Z. Ou, R. A. Rani, M.-H. Ham, M. R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R. B. Kanee and K. Kalantar-Zadeh, ACS Nano, 2012, 6, 4045–4053.
[22] J. Z. Ou, R. A. Rani, M.-H. Ham, M. R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R. B. Kaner and K. Kalantar-zadeh, ACS Nano, 2012, 6, 5737–5737.
[23] Z. Wang, Y. Hu, W. Wang, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan and H. Gu, Int. J. Hydrogen Energy, 2012, 37, 4526–4532.
[24] C. Yan and D. Xue, Adv. Mater., 2008, 20, 1055–1058.
[25] I. Sieber, H. Hildebrand, A. Friedrich and P. Schmuki, Electrochem. Commun., 2005, 7, 97–100.
[26] K. Lee, Y. Yang, M. Yang and P. Schmuki, Chem. – Eur. J., 2012, 18, 9521–9524.
[27] L. Assaud, J. Schumacher, A. Tafel, S. Bochmann, S. Christiansen and J. Bachmann, Systematic increase of electrocatalytic turnover at nanoporous platinum surfaces prepared by atomic layer deposition, J. Mater. Chem. A, 2015, 3, 8450-8458.
[28] V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri. Synthesis of self-ordered and well-aligned Nb2O5 nanotubes, CrystEngComm, v. 16, pp. 10273-10279, 2014.
[29] W. Wei, K. Lee, S. Shaw, P. Schmuki. Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chem. Commun., v. 48, 2012, pp. 4244-4246, 2012.
[30] X. Liu, R. Yuan, Y. Liu, S. Zhu, J. Lin, X. Chen. Niobium pentoxide nanotube poder for efficient dye-sensitized solar cells. New J. Chem., v. 40, pp. 6276-6280, 2016.
[31] X. Chan, T. Pu, X. Chen, A. James, J. Lee, J. B. Parise, D. H. Kim, T. Kim. Effect of niobium oxide phase on the furfuryl alcohol dehydration. Catalysis Communications, v. 97, pp. 65-69, 2017.
[32] L. M. Antonini. Superfícies nanoestruturadas de titânio e tratamento superficial com filmes Diamond Like Carbon (DLC). Dissertação Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 2012.
[33 ] H. Liu, N. Gao, M. Liao and X. Fang, Hexagonal-like Nb2O5 nonoplates-based photodetectors and photocatalyst with high performances, Scientific Reports, 5: 7716, 2015.
[34 ] Fang, X. S. et al. New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 21, 3907–3915, 2011.