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Abstract. The statistical uncertainty quantification of the 

injected uncertainties into a power system has been done to 

study the response of the power system to such injected 

randomness. The dominant electromechanical modes have been 

analysed and the frequency spectrum of the trajectories obtained 

for various state variables has been used to measure the impact 

of injected randomness on the system. The idea of Statistical 

Distance between the point of input perturbations and output 

measurement data has been explored. The simulation results 

indicate that there is a direct relationship between the input 

uncertainty and output measurement variable and is greatly 

affected by the magnitude and location of random injection. The 

above framework has been validated using Kundur's two area 

system and IEEE 14 Bus system. 
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1. Introduction 

The growing shift of the energy production scenario 

towards a cleaner and greener future, has led to the 

increase in the penetration of solar and wind based 

generation into the current power system. This has lead 

to the increase in the stochastic nature of the power 

system owing to the random nature of wind speed and 

solar irradiation. In addition to this, the loads connected 

to the power system is also not deterministic in the 

entire time range leading to extra sources of randomness 

into the power system. The impact of such randomness 

can’t be ignored during the system operation, planning 

and security assessment [1]. This leads to the whole area 

of Uncertainty Quantification (UQ) [2], [3] and [4]. 

The uncertainties in the form of either variable loads 

or renewable sources are not considered for 

Deterministic Load Flow (DLF) studies. When these 

uncertainties or randomness are incorporated into the 

analysis, the DLF studies gets modified into 

Probabilistic Load Flow (PLF) studies. This can be 

achieved either by modifying the modelling of the 

power system using Stochastic Differential Equations 

(SDEs) and Stochastic Differential Algebraic Equations 

(SDAEs) [5] or directly using a data driven approach. 

The later approach has been used in this work. Multiple 

trajectories or simulations needs to be run to get 

statistically viable results, generally using Monte Carlo 

simulation [6] and [7]. 

The present work deals with the impact of input 

randomness on the power system. The magnitudes of 

oscillations in the frequency spectrum of the desired 

state variables have been used to analyse the same. The 

frequency spectrum in the time series has been done 

using Fourier Transform of the data. The propagation 

of the input randomness on the different measurement 

data throughout the entire system has been found to 

follow a trend based on the point of injection of the 

noise. This trend has been validated using the idea of 

statistical     distance. Statistical distance is used as a tool 

to find the statistical intimacy between input injected 

stochasticity and output measurement data. Lower the 

value of the distance, more is the impact. The above 

methodology has been validated on Kundur’s two area 

system using power loads as stochastic parameter 

situated in different areas and IEEE 14 bus system 

modified to include wind based systems in order to 

study the statistical impact of stochastic nature of wind 

speed. 

The rest of the paper has been organized as follows. 

Section II deals with the Statistical Characterization of 

Stochastic parameters explaining the methodology in 

detail. Section III comprises of the numerical results 

obtained by doing the Fourier analisis using Kundur’s 

two area system. In section    IV, IEEE 14 bus system has 

been modified to include wind -based generation and its 

results have been presented. Section V shows the 

numerical results on the modified IEEE 14 bus system 

including wind generation for statistical uncertainty 

quantification using the idea of statistical distance. 

Section VI finally concludes the work. 

 

2. Statistical Characteristics of Stochastic 

Parameters 

A. Gaussian Mixture Models 

https://doi.org/10.24084/repqj21.210 25 RE&PQJ, Volume No.21, July 2023

mailto:suravi260691@gmail.com
mailto:nsenroy@ee.iitd.ac.in


Previous literatures have used Ornstein-Uhlenbeck 

Process (OUP) [6] and Fokker-Planck equation [7] for 

dealing with power systems subjected to random 

injections. Such methods deal with modifying the 

existing Differential Algebraic Equations (DAEs) and 

Differential Equations (DEs) to include the 

stochasticity, leading to the modelling of the power 

system using Stochastic Differential Algebraic 

Equations (SDAEs) and Stochastic Differential 

Equations (SDEs). However, the idea of statistical 

uncertainty quantification using GMMs leads to a more 

data driven approach, where the system modelling 

remains untouched. Only the statistical relationship 

between the input injected randomness and output 

measurement data  is analysed. The stochasticity present 

in the input random  injections of the power system gets 

manifested in the output measurement variables as well, 

when the sampling is done at an optimum rate [10]. 

Gaussian Mixture Models (GMMs) have been used 

for modelling the input injected randomness into the 

system and study its statistical properties which will 

lead to the statistical uncertainty quantification of the 

entire system. These models can be used to fit complex 

uncertainties related data which can’t be fit using any 

single standard probability distribution function. This 

versatile property of the GMMs makes them superior 

than single uni-modal normal distribution function [8] 

and [9]. A GMM represents the randomness in the form 

of a white noise which follows a gaussian or normal 

distribution. Each normal distribution within the 

GMM is considered to be its components which is 

defined individually by its weight or mixing proportion 

and mean. The number of components which will 

comprise the entire GMM is decided by Akaike’s 

Information Criteria (AIC) [11]. 

 

B. Statistical Distance 

Statistical Distance gives the measure of how strongly 

the output measurement data would be affected by the 

randomness           of the input stochastic variable. It can be 

used to measure the statistical intimacy between two 

statistical objects or variables. The larger the statistical 

distance between the input randomness and output 

measurement data, the lower will be the impact of the 

randomness on the output parameter. 

3. Numerical Results on Kundur’s Two 

Area System 

Kundur’s two area system has been used to carry out 

the analysis. The total simulation time is 200 seconds. 

All the simulations were carried out using Power 

System Analysis Toolbox (PSAT) [12] and Simulink in 

MATLAB. GMM based random load uncertainties 

were injected into the system. A random Gaussian 

signal with zero mean has been used to add noise into 

the load power in order to make it stochastic in nature. 

Details of Statistical Characterization using GMMs has 

already been discussed in the previous section. Gaussian 

noise has been added at the load buses. The loads 

connected at Bus 7 and 9 has been considered as  the 

stochastic variables. 

Four cases of stochastic processes with varying Signal 

to Noise Ratio (SNR) has been considered as follows: 

 

Case 1: Stochastic Load at Bus7, 20 SNR.  

Case 2: Stochastic Load at Bus9, 30 SNR.  

Case 3: Stochastic Load at Bus7, 30 SNR.  

Case 4: Stochastic Load at Bus9,35 SNR. 

 
A. Stochastic Load at Bus 7:  

The dominant electromechanical modes of the 

system upon introduction of noise at Bus 7 are 

shown in Table I and II for cases 1 and 3 

respectively. The modes are obtained with the 

addition of stochastic real load power injections at 

Bus 7 through GMM based modeling. The active 

power injections Pg of synchronous generator of G1 

(area 1) and G4 (area 2) for cases 1 and 3 are 

shown in  Fig. 1 and Fig. 3 respectively. 

   The magnitude of the oscillations in the frequency 

spectrum of the synchronous machines also depends 

on their participation factors. For modes in Tables I 

and II, the participation of G1 is higher as compared 

to G4 as the point of noise injection is  in Area 1. 

TABLE I 
DOMINANT ELECTRO-MECHANICAL MODES 
OF TWO AREA SYSTEM WITH STOCHASTIC 

LOAD IN AREA 1 CASE 1 

 
Mode Freq (Hz) Damping ratio (%) 

1 0.567 -7.905 
2 1.0148 -18.27 
3 1.031 -15.828 

TABLE II 
DOMINANT ELECTRO-MECHANICAL MODES 
OF TWO AREA SYSTEM WITH STOCHASTIC 

LOAD IN AREA 1 CASE 3 

 
Mode Freq (Hz) Damping ratio (%) 

1 0.572 -7.09 
2 1.006 -16.331 
3 1.029 -14.354 

    
Fig. 1: Frequency spectrum of Pg of synchronous generator 

G1 for cases 1 and 3 

 

 
Fig. 2: Frequency spectrum of Pg of synchronous generator 

G1 for cases 2 and 4 
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Fig. 3. Frequency spectrum of Pg of synchronous 

generator G4 for Cases 1 and 3 

Fig. 4. Frequency spectrum of Pg of synchronous generator 
G4 for Cases 2 and 4 

 

B. Stochastic Load at Bus 9:  

    The dominant electromechanical modes of the 

system upon introduction of noise at Bus 9 are shown 

in Table III and IV for cases 2 and 4 respectively. 

The active power injections Pg of synchronous 

generator of G1 (area 1) and G4 (area 2) for cases 

2 and 4 are shown in     Fig. 2 and  4 respectively. 

For modes in Tables III and    IV, the participation of 

G4 is higher as compared to G1 as the point of noise 

injection is in Area 2. 

   It is quite evident from the above figures, that the 

amplitude of the oscillations of the generators 

increases on decreasing the value of SNR of the 

additive white gaussian noise in the load power. It 

was found that the combined participation factors of 

G1 and G2 is greater than that of the combined 

participation of G3 and G4 for cases 1 and 3. The 

reverse happens for cases 2 and 4 when the point of 

stochastic load injection is at Bus  9 in Area 2. 

TABLE III 
DOMINANT ELECTRO-MECHANICAL MODES 
OF TWO AREA SYSTEM WITH STOCHASTIC 

LOAD IN AREA-2 CASE 2 

 
Mode Freq (Hz) Damping ratio (%) 

1 0.571 -8.029 
2 1.0229 -16.961 
3 1.04 -18.622 

 

TABLE IV 
DOMINANT ELECTRO-MECHANICAL MODES 
OF TWO-AREA SYSTEM WITH STOCHASTIC 

LOAD IN AREA 2 CASE 4 

 
Mode Freq (Hz) Damping ratio (%) 

1 0.557 -6.194 
2 1.0034 -16.054 
3 1.0192 -13.786 

 

 

 

4. Numerical Results of IEEE-14 Bus 

system with DFIG 

    IEEE 14 Bus system with five synchronous 

machines connected at Buses 1, 2, 3, 6 and 8 

respectively has been used here for studying the impact 

of variable wind speed using Doubly Fed Induction 

Generator (DFIG). Here the variable wind speed has 

been considered as the random variable. Weibull 

distribution with a scale factor of 20 and shape factor 

of 2 has been used to model the wind speed with a 

mean speed of 15 m/s. Figure 6 gives the wind speed 

over the span of time. The system has been 

implemented using PSAT/MATLAB integrated 

software environment. The entire simulation has been 

run for 100 seconds. Three scenarios have been 

analysed where the synchronous generators have been 

replaced by DFIGs connected at Bus 1, 3 and 6 

respectively, one at a time. The modified IEEE 14 Bus 

system where the synchronous generator at Bus 3 has 

been replaced by a DFIG model (wind farm consisting 

of 300 wind turbines) of same capacity has been 

displayed in figure 5. Here the DFIG has been 

connected to Bus 3 using a new bus 15 via a 

transformer with unity tap ratio. 

    The dominant electromechanical modes of the 

system upon introduction of variable wind speed for 

the three above mentioned scenarios are shown in 

Tables V, VI and VII respectively. The active power 

Pg of the synchronous generators for all the 

scenario 1 and 2 are shown in figures 7 to 10. It 

can be noticed that the magnitude of the oscillations in 

the frequency spectrum of the synchronous machines 

varies as the point of placement of DFIG changes. The 

machines which are closer to the DFIGs show a 

greater amplitude of oscillations as compared to the 

ones farther away from it. As a result it can be 

concluded that the point of injection of randomness 

into a system plays a vital role in the propagation of 

the noise associated with it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Modified IEEE 14 Bus system with DFIG at 
Bus 3 
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TABLE V 

 

Fig. 6. Wind speed for DFIG 

 

TABLE V 
DOMINANT ELECTRO-MECHANICAL MODES 

OF THE MODIFIED IEEE 14 BUS SYSTEM 
WITH DFIG CONNECTED AT BUS  1 

 
Mode Freq (Hz) Damping ratio (%) 

1 0.231 -53.949 
2 0.508 -21.526 
3 0.762 -12.609 
4 1.727 -8.239 

 
TABLE VI 

DOMINANT ELECTRO-MECHANICAL MODES 
OF THE MODIFIED IEEE 14 BUS SYSTEM  

WITH  DFIG CONNECTED  AT BUS  3 

 
Mode Freq (Hz) Damping ratio (%) 

1 0.364 -45.498 
2 0.419 -14.818 
3 1.6073 -26.385 
4 1.687 -0.845 

 
TABLE VII 

DOMINANT ELECTRO-MECHANICAL MODES 
OF THE MODIFIED IEEE 14 BUS SYSTEM WITH 

DFIG CONNECTED AT BUS  6 

 
Mode Freq (Hz) Damping ratio (%) 

1 0.337 -51.361 
2 0.351 -17.912 
3 1.238 -29.315 
4 1.635 -30.455 

 

5. Numerical Results for Statistical 

Uncertainty Quantification 
    The statistical distance between input random wind 

speed and output power of the synchronous machine for 

scenario 1 with DFIG at bus 1 and scenario 2 with 

DFIG at bus 3 are shown in Tables VIII and IX. The 

statistical distance has also been shown using different 

combination of output parameter of bus voltage and 

input wind speed for scenario 2 in Table           X. 

Lower value of statistical distance signifies more 

intimate behaviour between input and output parameters 

and vice versa. If the statistical distance reduces, the 

impact of randomness  on the output parameter 

increases, leading to greater amplitude of modes in the 

Fourier analysis. As a result, the amplitude of the modes 

in the frequency spectrum analysis shown in section  IV 

should be inversely proportional to the statistical 

distance analysis. This has almost been achieved using 

the analysis presented here. For example, the amplitudes 

of the modes of generators at Buses 1 and 2 are greater 

than the generators at Buses 6 and 8 in figures 9 and 10 

respectively. Similar trends can also be seen in the 

statistical distance in Table X, where the statistical 

distance for buses 1 and 2 are lesser than that  of the 

buses 6 and 8 for the same scenario. 

 

 

Fig. 7. Frequency spectrum of Pg of synchronous 
generators at bus 3 and 2   for DFIG at Bus 1 

Fig. 8. Frequency spectrum of Pg of synchronous generator 
at bus 8 and 6   for DFIG at Bus 1 

 

Fig. 9. Frequency spectrum of Pg of synchronous generator 
at bus 1 and 2   for DFIG at Bus 3 

Fig. 10. Frequency spectrum of Pg of synchronous 
generator at bus 8 and 6   for DFIG at Bus 3 

 

 

TABLE VIII 
STATISTICAL DISTANCE 

FOR DFIG AT BUS 1 

 
Cases Distance 

Speed & Generator Power at Bus 2 0.528 
Speed & Generator Power at Bus 3 0.92751 
Speed & Generator Power at Bus 8 0.92752 
Speed & Generator Power at Bus 6 0.92752 
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TABLE IX 
STATISTICAL DISTANCE 

FOR DFIG AT BUS 3 

 
Cases Distance 

Speed & Generator Power at Bus 2 0.0408 
Speed & Generator Power at Bus 8 0.4375 
Speed & Generator Power at Bus 6 0.4375 
Speed & Generator Power at Bus 1 2.0301 

 

TABLE X 
STATISTICAL DISTANCE 

FOR DFIG AT BUS 3 
 

Cases Distance 
Speed and Voltage at Bus 3 0.5742 
Speed and Voltage at Bus 2 0.6092 
Speed and Voltage at Bus 1 0.6242 
Speed and Voltage at Bus 6 0.6342 
Speed and Voltage at Bus 8 0.6342 

 

 
6. Conclusion 

The present work studies the impact of randomness 

of the stochastic process on the dynamic response of 

the power system. The frequency spectrum obtained 

using Fourier Transform for the various state 

variables of the power system has been used to carry 

out the analysis. The stochastic nature of  the 

random variable has been modelled using GMMs and 

the concept of statistical distance has been used to 

quantify it. Kundur’s two area system has been used 

to show that the presence of stochastic variable in 

an area of the system has a reduced impact on the 

modes of the other areas as has  been evident from 

the magnitude of the modes as well as the 

participation factors of the individual synchronous 

machines. The magnitude of the modes of the 

oscillations is also a function of the amount of 

randomness injected. The lesser  the SNR, the 

higher was the magnitude of oscillations owing to 

the increased amount of noise in the stochastic 

variable. 

The modified IEEE 14 Bus system was used to 

model the variable nature of the wind speed in case of 

renewable integrated power systems. The placement 

of the DFIG plays  a vital role as it changes the point 

of injection of randomness into the system. This has 

a direct impact on the magnitude of the oscillations 

and varies with the point of randomness. The idea of 

statistical distance between the input variable wind 

speed and output power generation of the 

synchronous machines or the output bus voltages 

have been used as a tool to find the statistical 

intimacy. Lower values of statistical distance 

signifies more statistical dependency amongst the 

input random variable and output measurement data. 

The results of the Fourier analysis and statistical 

analysis using statistical distance leads to similar 

trends of results. 

Such analysis gives a direct data driven one on one 

relationship between the input injected randomness 

and output measurement data in the power system. It 

is helpful in analysing the propagation of a noise and 

can lead to a better understanding of its nature 

leading to better control strategies for the overall 

system. The current methodology can be used to 

model any kind of uncertainty injected into the power 

system including cases with variable irradiation in 

case of solar           photovoltaic integrations. 
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“Impact of variability, uncertainty and frequency regulation 
on power system frequency distribution,” in 2016 Power 
Systems Computation Conference (PSCC). IEEE, 2016, pp. 
1–8. 

[2] Y. Qiu, J. Lin, X. Chen, F. Liu, and Y. Song, 
“Nonintrusive uncertainty quantification of dynamic power 
systems subject to stochastic excitations,” IEEE Transactions 
on Power Systems, vol. 36, no. 1, pp. 402–414, 2020. 
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