Cost Loss Allocation in Distribution Networks with High Penetration of Distributed Renewable Generation – A Comparative Study

P. M. De Oliveira-De Jesús¹, M.T. Ponce de Leão¹, J.M. Yusta-Loyo² and H.M. Khodr³

¹ Electrical and Computer Department of Faculdade de Engenharia da Universidade do Porto (FEUP) Instituto de Engenharia de Sistemas e Computadores (INESC Porto)
Dr. Roberto Frias, 378 4200-465 Porto Portugal (contact e-mail: pdeoliv@fe.up.pt and mleao@fe.up.pt)
Phone: +351 22 209 4230 Fax: +351 22 209 4150 http://power.inescn.pt/

² Departamento de Ingeniería Eléctrica - Centro Politécnico Superior Universidad de Zaragoza, Zaragoza – España jmyusta@unizar.es

³ Departamento de Transporte y Conversión de Energía - Universidad Simón Bolívar Valle de Sartenejas, Caracas – Venezuela hkhodr@usb.ve

Abstract. The implementation of market mechanisms to remunerate distributed generation should take into account a non-discriminatory access to distribution networks. In consequence, power losses of distribution network must be fairly allocated among the all distributed generators and consumers. Several methods for power loss cost allocation have been proposed in the literature, divided basically into two groups. Firstly, methods as postage stamp, mw-mile, circuit based and proportional sharing have been supported on an arbitrary allocation of power losses between consumers and generators, typically 50-50%. More recently, a modified proportional sharing procedure has been proposed based on the allocation of the entire losses to consumers disgregarding the influence of distributed generators using the basic proportional sharing principle and reallocate avoided or produced losses among distributed generators. Secondly, marginal procedures have been extensively proposed in order to send efficient economical signals to the market agents. Marginal methods require a slack bus designation and do not assign arbitrarily power losses among producers and consumers. This paper presents a comparative study of different loss allocation procedures taking into account different levels of penetration of renewable sources in distribution networks. Results are obtained and discussed from a test distribution network.

Key words
Loss allocation, distribution systems, distributed generation, dispersed generation, embedded generation.

1. Introduction

Under ongoing restructuring process, electric distribution activities remains as monopoly and traditional regulatory schemes based in Cost of Service (CoS) have been substituted by new regulatory frameworks as Performance Based Ratemaking (PBR) which are developed to encourage economic efficiency, proposing an open and non-discriminatory access to the networks. Unfortunately, an open access policy must be made through an imperfect delivery network that produces power losses. In consequence, these power losses must be fairly allocated among the all distributed generators and consumers. Losses are nonlinear functions of line flows and it is difficult determining the responsibility of each generator and demand in global power losses.

These facts permit the existence of several and different methods for power loss cost allocation in the literature, mainly in transmission systems [1]. A lack of information is observed about allocation methods applied to distribution systems. Generally, power losses at distribution level were considered as an additional load and therefore allocated among all consumers using average values [10]. However, a huge increase of distributed generation forces the development of new allocation procedures and some ones have been proposed recently, usually adapted from methodologies and widely applied in transmission systems. Basically, taking into account the way that power losses are allocated among network users these methods could be divided into two groups.

Firstly, procedures as postage stamp [2],[3], MW-mile [2],[3], Zbus [4] and proportional sharing [5] are based on an arbitrary distribution of power losses between consumers and generators, typically 50-50%. More recently, a modified proportional sharing procedure has been proposed [6] based on the allocation of the entire losses to consumers disgregarding the generators influence using the proportional sharing principle and reallocate avoided or produced losses among distributed generators. Secondly, marginal procedures were extensively used in transmission systems [7]. Well known Incremental Transmission Coefficients (ITL) have been modified and introduced as Marginal Loss Coefficients (MLCs) in order to allocate power losses in distribution systems with distributed generation [8],[9]. The growing penetration of distributed generation into distribution networks essentially though renewable generation must be properly assessed in order to verify its impact in the allocation of global avoided or produced losses in the system among all market agents. This paper presents a comparative study of seven loss allocation procedures taking into account different levels of penetration of distributed generation in distribution networks. The methods studied were 1) Marginal, 2) Reconciled Marginal, 3) Zbus, 4) Postage stamp, 5) MW-mile, 6) Proportional Sharing, 7) Proportional Sharing Modified. Results were obtained and discussed from a test distribution network with two distributed generators.
2. Cost loss allocation methodologies

Loss allocation procedure consists in assign total active power loss L among all generators and demands:

$$L = \sum_{i=1}^{n} L_{Gi} + \sum_{i=1}^{n} L_{Di}$$

(1)

where

L_{Gi} active power loss allocated to generators of bus i;
L_{Di} active power loss allocated to demands of bus i.

n number of buses.

A. Postage Stamp

The postage stamp procedure use average values to proportionally allocate 50% of losses to the demands and 50% to generators, that is [3]:

$$L_{Di} = 50\% \times L \times \frac{P_{Di}}{P_D}, \quad i, \ldots, n$$

(2)

$$L_{Gi} = 50\% \times L \times \frac{P_{Gi}}{P_G}, \quad i, \ldots, n$$

(3)

where

P_{Gi} active power output of generators of bus i;
P_{Di} active power input of demands of bus i;
P_G, P_D total active power generated and demanded;

B. Power Flow based MW-mile

The power flow based MW-mile procedure allocates 50% of losses to the demands and 50% to generators and are based on the extent of use of distribution network by all generators and demands. Then, allocation value by use of the network T applied to each demand and generator is expressed as [2]:

$$T_{Di} = \sum_{k=1}^{m} F_{Di}l_k$$

(4)

$$T_{Gi} = \sum_{k=1}^{m} F_{Gi}l_k$$

(5)

where,

F_{Di} power flow in branch k produced by demand i;
F_{Gi} power flow in branch k produced by generator i;
l_k length of branch k;
m number of branches.

Losses allocated to demands and generators are given by:

$$L_{Di} = 50\% LT_{Di} \sum_{j=1}^{n} T_{Dj} , \quad i, \ldots, n$$

(6)

$$L_{Gi} = 50\% LT_{Gi} \sum_{j=1}^{n} T_{Gj} , \quad i, \ldots, n$$

(7)

C. Proportional Sharing

Proportional sharing methods [5] are based on gross line flows. This method assumes that the system is fed with the actual generation, and then nodal generation remains unchanged but nodal demands must be slightly modified in order to accomplish Kirchoff’s laws. However, it is not possible, to allocate losses to generators and demands at the same time. Generally, upstream looking algorithm is applied to allocate 50% power losses between generators and a downstream looking algorithm to allocate the other 50% of power losses between demands.

1) Downstream looking algorithm

The total power gross flow P^{gross} (i.e. the sum of all outflows at node i) may be expressed as:

$$P^{\text{gross}}_i = P_{Gi} + \sum_{j=1}^{n} \delta_{ij} P^{\text{gross}}_j$$

(8)

where,

$$\delta_{ij} P^{\text{gross}}_j$$ power flow leaving bus i;

$$\sum_{j=1}^{n} \delta_{ij} P^{\text{gross}}_j$$ set of buses receiving power from bus i.

Equation (8) constitutes a system of linear equations and may be written as:

$$A_i P^{\text{gross}} = P_G$$

(10)

Then, gross demand at bus i, can be expressed:

$$P^{\text{gross}}_{Gi} = \frac{P_{Gi} \sum_{j=1}^{n} \delta_{ij} P^{\text{gross}}_j}{P_G}, \quad i=1,\ldots,n$$

(11)

where P_i is the real injection i given by a power flow solution and power losses allocated to generators are:

$$L_{Gi} = P_{Gi}^{\text{gross}} - P_{Gi}$$

(12)

2) Upstream looking algorithm

The total power gross flow P^{gross} (i.e. the sum of all inflows at node i) may be expressed as:

$$P^{\text{gross}}_i = P_{Di} + \sum_{j=1}^{n} \delta_{ij} P^{\text{gross}}_j$$

(13)

$$\delta_{ij} P^{\text{gross}}_j$$ power flow reaching bus i from lines connected it;

$$\sum_{j=1}^{n} \delta_{ij} P^{\text{gross}}_j$$ set of buses from which power flows toward bus i.

Equation (13) constitutes a system of linear equations written as:

$$A_i P^{\text{gross}} = P_D$$

(15)

Then, gross demand at bus i, can be expressed:

$$P^{\text{gross}}_{Di} = \frac{P_{Di} \sum_{j=1}^{n} \delta_{ij} P^{\text{gross}}_j}{P_D}, \quad i=1,\ldots,n$$

(16)

where P_i is the real injection i given by a power flow solution and power losses allocated to demand are:

$$L_{Di} = P_{Di}^{\text{gross}} - P_{Di}$$

(17)

D. Proportional Sharing Modified

This method [6] is based on proportional sharing principle presented in [5] but with a different assignation of losses. This approach consists in to allocate the entire losses (100%) to demands disregarding the influence distributed generators using the proportional sharing principle and reallocate avoided or produced losses among distributed generators. The implementation of this method requires a load flow solution with and without distributed generators in order to compute avoided or produced loss of overall distributed injections.
E. Circuit Based Allocation (Zbus)

Circuit based loss allocation model [4] distribute the system losses \(L \) among \(n \) buses of the network according to:

\[
L = \sum_{i=1}^{n} L_i \tag{18}
\]

\(L_i \) components are obtained from the real part of the inverse of admittance matrix \(Y = G + jB \), where \(Y = R + jX \) through the following general expression:

\[
L_i = \Re \left[\frac{1}{\sum_{j=1}^{n} R_j I_j} \left(\sum_{j=1}^{n} R_j I_j \right) \right] \tag{i=1,\ldots,n} \tag{19}
\]

where, \(I_i = (S_j^*/V_j^*) \).

In general, if a given bus \(i \) has both generation \(P_{gi} \) and demand \(P_{di} \), the allocation loss component \(L_i \) can be further assigned in a pro rata manner.

\[
L_{gi} = (1-\gamma_i) L_i, \quad L_{di} = \gamma_i L_i \tag{i=1,\ldots,n} \tag{20}
\]

where,

\[
\gamma_i = \frac{P_{di}}{P_{di}+P_{gi}} \tag{i=1,\ldots,n} \tag{21}
\]

F. Marginal Allocation

Under incremental analysis power losses can be allocated to producers and consumers simultaneously through Marginal Loss Coefficients (MLCs) at given operating point. By definition, these coefficients measure the change in power active losses due to incremental change in power injections in each node if the network [1]:

\[
MLC^p_{gi} = \frac{\partial L}{\partial (P_{gi}-P_{di})} \quad MLC^q_{gi} = \frac{\partial L}{\partial (Q_{gi}-Q_{di})} \tag{22}
\]

As there is no explicit relationship between losses and power injections the standard chain rule is applied in the calculation of MLCs using intermediate variables, voltages and angles obtained from a converged AC power flow [7]:

\[
\begin{bmatrix}
\frac{\partial L}{\partial P_{gi}} & \frac{\partial L}{\partial Q_{gi}} & \cdots & \frac{\partial L}{\partial P_{di}} & \frac{\partial L}{\partial Q_{di}} \\
\frac{\partial L}{\partial V_1} & \frac{\partial L}{\partial \theta_1} & \cdots & \frac{\partial L}{\partial V_1} & \frac{\partial L}{\partial \theta_1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{\partial L}{\partial V_n} & \frac{\partial L}{\partial \theta_n} & \cdots & \frac{\partial L}{\partial V_n} & \frac{\partial L}{\partial \theta_n}
\end{bmatrix}
\begin{bmatrix}
MLC^p_{gi} \\
MLC^q_{gi} \\
MLC^p_{di} \\
MLC^q_{di}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial P}{\partial V_i} - B_i \frac{\partial V_i}{\partial \theta_i} \sin(\theta_i - \theta_j) - B_j \frac{\partial \theta_i}{\partial \theta_j} \\
\frac{\partial Q}{\partial V_i} - B_i \frac{\partial V_i}{\partial \theta_i} \cos(\theta_i - \theta_j) - B_j \frac{\partial \theta_i}{\partial \theta_j} \\
\frac{\partial P}{\partial \theta_i} - B_i \frac{\partial V_i}{\partial \theta_i} \sin(\theta_i - \theta_j) - B_j \frac{\partial \theta_i}{\partial \theta_j} \\
\frac{\partial Q}{\partial \theta_i} - B_i \frac{\partial V_i}{\partial \theta_i} \cos(\theta_i - \theta_j) - B_j \frac{\partial \theta_i}{\partial \theta_j}
\end{bmatrix}
\tag{23}
\]

The general system of linear equations is solved eliminating the columns and rows correspondent to slack and PV nodes: \(MLC^{p,i} = MLC^{q,i} = MLC^{p,g} = \theta \) and entries of the transpose of Jacobian and the right-hand vector are:

\[
\frac{\partial P}{\partial V_j} = G_j \frac{\partial V_j}{\partial \theta_i} \sin(\theta_i - \theta_j) + B_j \frac{\partial \theta_i}{\partial \theta_j} \tag{24}
\]

\[
\frac{\partial P}{\partial \theta_i} = -B_i \frac{\partial V_i}{\partial \theta_i} + \sum_{j=1}^{n} V_j \left[G_j \frac{\partial V_j}{\partial \theta_i} \sin(\theta_i - \theta_j) - B_j \frac{\partial \theta_i}{\partial \theta_j} \right] \tag{25}
\]

\[
\frac{\partial P}{\partial \theta_j} = V \left[G_j \frac{\partial \theta_j}{\partial \theta_i} \cos(\theta_i - \theta_j) + B_j \frac{\partial \theta_i}{\partial \theta_j} \right] \tag{26}
\]

G. Reconciled Marginal Allocation

As result of non-linearity of losses, the sum of allocated losses using the marginal allocation does not match with the actual losses of the system:

\[
\sum_{i=1}^{n} L_{gi} + \sum_{i=1}^{n} L_{di} > L_{AC} \tag{36}
\]

\[
L_{AC} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} G_i V_i^2 + V_j^2 - 2V_i V_j \cos(\theta_i - \theta_j) \tag{37}
\]

Therefore, losses allocated must be normalized through a reconciliation factor \(k_o \):

\[
L_{gi} = P_{gi} \cdot k_o \cdot MLC^p_{gi} \tag{i=1,\ldots,n} \tag{38}
\]

\[
L_{di} = -P_{di} \cdot k_o \cdot MLC^p_{di} \tag{i=1,\ldots,n} \tag{39}
\]

where

\[
k_o = \frac{L_{AC}}{\sum_{i=1}^{n} L_{gi} + \sum_{i=1}^{n} L_{di}} \tag{40}
\]

3. Distributed Generation Penetration

The penetration of distributed generation into a given distribution system could be measured through an individual penetration index [11] associated with the generator \(i \):

\[
\eta_i = \frac{P_{gi}}{P_D} \tag{41}
\]

where:

\(P_{di} \quad \text{Real power injected by generator} \ i \ \text{to the grid} \)

\(P_D \quad \text{Maximum demand of the system} \)

or through a general penetration index written as the sum of all individual penetration indexes:

\[
\eta = \sum_{i=1}^{n} \eta_i = \sum_{i=1}^{n} \frac{P_{gi}}{P_D} \tag{42}
\]

At given point, if \(\eta \) is less than 1 distribution system requires power injections from grid supply point. If \(\eta \) is greater than 1 the distribution system exports power towards the transmission system.
4. Case Study

As shown in Fig. 1 a 28-bus 15kV distribution system is used to compare the seven distribution loss allocation procedures. The test system comprises 25 demands and two wind parks connected at bus 27 and 28 respectively. Each wind park has a generation capacity of 15MW. Due to regulatory requirements both wind parks must generate reactive power (using VAR compensation through capacitors, if required) in order to guarantee a voltage level between 0.95 and 1.05 pu in each own busbar [12].

At peak time total active and reactive demand are 15.5MW and 4.6MVAr as shown in Table II of the appendix. Bus 1 is the grid supply point and represents the power interchange point with transmission system. Data line can be found in Table III of the appendix.

A. Avoided and produced losses as function of penetration indexes.

Fig. 2 shows the distribution system losses \(L \) produced in the system by the interaction of both wind parks with different penetration level.

The minimum power losses in the system (485kW) are reached when \(\eta_{27} = 0.3 \) \((P_{G27}=4.65MW) \) and \(\eta_{28} = 0.2 \) \((P_{G28}=3.10MW) \). This operation point also corresponds with the maximum avoided losses in the system (764kW) as seen in Fig. 3. The avoided losses of the system are defined as:

\[
\text{Avoided Losses} = L_{\text{without DG}} - L_{\text{with DG}} \quad (43)
\]

Using the seven procedures described in detail in Section 2 we are able to build graphs of power losses allocated for each wind park \((L_{G27} \text{ and } L_{G28}) \) and all demands \((L_{D2},\ldots,L_{D26}) \) as function of individual penetration indexes associated to both generators \((\eta_{27} \text{ and } \eta_{28}) \) described in Section 3.

Fig 5, 6 and 7 presents the results associated to wind park 1 (bus 27), wind park 2 (bus 28) and demand 11, respectively. Losses allocated are given in kW. Penetration indexes go form 0 to 1. This mean that power injected to grid can vary from 0MW to 15.5MW in each wind park.

The allocation of negative or positive losses must be interpreted under a cost allocation policy as follow: positive losses imply a charge or payment for produced losses and negative losses imply a reward for avoided losses.
In general, as seen in all graphs, it is confirmed that marginal procedures, circuit based and proportional sharing modified are able to assign positive and negative losses. On the other hand, postage stamp, MW mile and proportional sharing procedures always derive in positive losses. Also, it is verified that all procedures recover the entire losses of the system except the marginal procedure that recovers approximately twice power losses. This result is obtained as consequence of nonlinearity of losses justifying the application of a reconciled marginal procedure.

Despite postage stamp, MW-mile and proportional sharing procedures were supported under different foundations, results shows similar behavior for both wind parks and all demands (see figs. 5d, 6d, 7d, 5e, 6e and 7e). In fact, postage stamp results were very similar to the obtained using MW-mile procedure. Then, postage stamp graphs were not included here due to economy of space.

These results are meaningful because postage stamp procedure does not use network information and the other two: MW-mile and proportional sharing procedures are based on power flow solutions and network topology information. The similarity of results could be explained as consequence of the arbitrary assignation of 50%-50% among producers and demands.

If another arbitrary assignation is applied as proposed in proportional sharing modified (demand pays for 100% of losses and producers pays or receives for avoided or produced losses) the solutions are close to the achieved using reconciled marginal procedures (see figs. 5b, 6b, 7b, 5f, 6f and 7f).

Another important fact to point out is that proportional sharing modified procedure allocates negative losses to producers in the same way that avoided losses were distributed as function of penetration indexes (see figs 4, 5f and 6f).
Finally, it is observed that Zbus method achieve comparable results respect to reconciled marginal procedure for loss allocation to demands (see figs. 7b and 7c). It could be explained due to as marginal procedures the Zbus method is supported in the network equations and uses a non-arbitrary natural division of losses through Zbus matrix in a nodal basis. However, Zbus method requires an arbitrary assignation of 50%-50% in order to allocate losses among demands and producers.

From the above results and particularly when a high penetration level is achieved ($\eta = \eta_{27} + \eta_{28} > 0.7$) it is worth noting the following results:

a) Marginal procedures reach high volatility. In fact the highest values for losses were achieved for loss allocation to producers (see figs 5a, 6a and 7a). For instance when $\eta > 0.7$, wind park 1 must pay at least 2180kW when $\eta > 0.7$ and 6160kW when $\eta = 2$. On the other hand, Demand 11 receives not less than 100kW when $\eta > 0.7$ and 100kW when $\eta = 2$.

b) Reconciled marginal procedures permits to mitigate some volatility (see figs 5b, 6b and 7b). For instance, wind park 1 must pay at least for 1150kW when $\eta > 0.7$ and 3320kW when $\eta = 2$. On the other hand, Demand 11 receives not less than 100kW when $\eta > 0.7$ and 100kW when $\eta = 2$.

c) Under a marginal allocation procedure, reconciled or not, a high penetration of distributed generation derives in positive losses for producers and negative losses for demands. In general, this means that a very high penetration of renewable generation may produce that distributed generators have to pay for increase of losses and demands have to receive a compensation for avoided losses.
d) Loss allocation using postage stamp, MW-mile and proportional sharing procedures derive always in positive and moderate charges respect to marginal procedures. Table 1 shows losses allocated to both wind generators and demand 11 when $\eta = 2$.

<table>
<thead>
<tr>
<th>Postage Stamp</th>
<th>MW-Mile</th>
<th>Proportional Sharing</th>
<th>Proportional Sharing Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG27</td>
<td>990kW</td>
<td>1045kW</td>
<td>1165kW</td>
</tr>
<tr>
<td>LG28</td>
<td>990kW</td>
<td>937kW</td>
<td>816kW</td>
</tr>
<tr>
<td>LD11</td>
<td>115kW</td>
<td>121kW</td>
<td>50kW</td>
</tr>
</tbody>
</table>

Then, losses allocated to demands do not depend of penetration index η. On the other hand, losses allocated to generators are given by the effect of penetration of distributed generators into general avoided/produced losses as shown in fig 4. Table 1 shows losses allocated to both wind generators and demand 11 when $\eta = 2$.

Really, this procedure constitutes a hybrid model. The loss allocation process behaves on similar way as a marginal approach when the distributed generation is capable to avoid losses. Conversely, when generators are not capable to avoid losses, the procedure behaves standard proportional sharing procedure. For instance, if the generation penetration indexes are low, the distributed generators are capable of avoid losses. In these circumstances, generators are rewarded by avoided losses and demands are charged by produced losses. This behavior is like a marginal behavior reported above.

e) Loss allocation using a proportional sharing modified offers interesting results. As seen in fig 7f, losses allocated to demand are a fixed number obtained from his contribution disregarding the effect of distributed generators using the proportional sharing method.

![Fig 7. Losses allocated to Demand 11](https://doi.org/10.24084/repqj03.300)
Conversely, when the generation penetration indexes are high distributed generators do not avoid losses and are charged by produced losses. However all demands still charged by produced losses.

5. Conclusions

This paper presents a comparative study of seven loss allocation procedures taking into account different levels of penetration of renewable generation in distribution networks. Results permits to conclude that a high penetration of distributed generation usually derives in an increase of total system losses respect to the total losses disregarding the effect of the generators. In consequence, if marginal loss allocation procedures are applied final result yields in volatile charges to be paid by generators and high compensations for demands. Other methods as postage stamp, MW-mile and proportional sharing are capable to diminish the volatility of marginal solutions bt means of the application of positive charges for all user of the network. A proportional sharing modified procedure constitutes a hybrid model behaving on similar way as a marginal approach when the penetration of distributed generation is low. Conversely, when the penetration of distributed generation is high, the procedure behaves as a standard proportional sharing method.

Acknowledgement

This work was supported in part by the Fundação para a Ciência e a Tecnologia Portugal Grant SFRH/BD8410-2002.

References

Appendix

Table II. - Peak demand

<table>
<thead>
<tr>
<th>Node</th>
<th>Load</th>
<th>Node</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kW</td>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>14</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>350</td>
<td>15</td>
<td>850</td>
</tr>
<tr>
<td>3</td>
<td>700</td>
<td>16</td>
<td>850</td>
</tr>
<tr>
<td>4</td>
<td>700</td>
<td>17</td>
<td>450</td>
</tr>
<tr>
<td>5</td>
<td>560</td>
<td>18</td>
<td>600</td>
</tr>
<tr>
<td>6</td>
<td>180</td>
<td>19</td>
<td>800</td>
</tr>
<tr>
<td>7</td>
<td>600</td>
<td>20</td>
<td>900</td>
</tr>
<tr>
<td>8</td>
<td>650</td>
<td>21</td>
<td>350</td>
</tr>
<tr>
<td>9</td>
<td>650</td>
<td>22</td>
<td>630</td>
</tr>
<tr>
<td>10</td>
<td>800</td>
<td>23</td>
<td>750</td>
</tr>
<tr>
<td>11</td>
<td>900</td>
<td>24</td>
<td>560</td>
</tr>
<tr>
<td>12</td>
<td>450</td>
<td>25</td>
<td>450</td>
</tr>
<tr>
<td>13</td>
<td>600</td>
<td>26</td>
<td>570</td>
</tr>
</tbody>
</table>

Table III. - Data Line

<table>
<thead>
<tr>
<th>Nodes</th>
<th>R</th>
<th>Bcap</th>
<th>Nodes</th>
<th>R</th>
<th>Bcap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(pu)</td>
<td></td>
<td></td>
<td>(pu)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.2407</td>
<td>10</td>
<td>13</td>
<td>0.2097</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.2745</td>
<td>11</td>
<td>16</td>
<td>0.1541</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.3472</td>
<td>12</td>
<td>21</td>
<td>0.1808</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0.3756</td>
<td>13</td>
<td>14</td>
<td>0.2097</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0.2745</td>
<td>14</td>
<td>15</td>
<td>0.3835</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>0.2407</td>
<td>15</td>
<td>17</td>
<td>0.5987</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0.2977</td>
<td>16</td>
<td>19</td>
<td>0.6812</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0.2407</td>
<td>17</td>
<td>20</td>
<td>0.3835</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.1541</td>
<td>18</td>
<td>21</td>
<td>0.5987</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>0.2407</td>
<td>19</td>
<td>22</td>
<td>0.2407</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>0.2676</td>
<td>20</td>
<td>23</td>
<td>0.2745</td>
</tr>
</tbody>
</table>

Biographies

P. M. De Oliveira De Jesus was born in Caracas, Venezuela in 1971. He received the M.Sc. and the Electrical Engineering degree in 2002 and 1.995 from Universidad Simón Bolívar, Caracas, Venezuela. Former Assistant Professor of Electrical Engineering at Universidad Simón Bolivar is presently pursuing Ph.D. studies at Faculdade de Engenharia da Universidade do Porto (FEUP) and work as research at Instituto de Engenharia de Sistemas e Computadores (INESC Porto), Portugal. His research interest includes technical and economic issues of electric power systems. His e-mail address is pmede@fe.up.pt

M. T. Ponce de Leão was born in Porto, Portugal in 1957. She got her degree and Ph.D. degree from Faculdade de Engenharia da Universidade do Porto (FEUP) in 2000,2001 in distribution systems with embedded generation”. She presently is a Professor of Electrical Engineering, at Universidad Simón Bolivar, Caracas, Venezuela.

J. M. Yusta-Loyo received the Industrial Engineer degree in 1994 from the Engineering Higher Polytechnic Institute (ISPIAE) in 1997 and 1993 respectively. He presently is a Professor of Electrical Engineering, at Universidad Simón Bolivar, Caracas, Venezuela.