Improved Injection Current Controller in Single-Phase Shunt Active Power Filters

Victor M. Moreno¹ and Alberto Pigazo¹

¹Department of Electronics and Computers
E. T. S. N., University of Cantabria
c/ Gamazo, 1 – Santander 39006 Cantabria (Spain)
Phone number: +0034 942 201576, email: morenov@unican.es, pigazoa@unican.es

Abstract. Nowadays shunt active power filters (SAPFs) are one of the most versatile and efficient solutions in the correction of the load power factor and the compensation of current harmonics generated by non-linear loads. The injection current controller, which must achieve that the compensation current track the reference one, is one of the basic components of the controller of a SAPF. This work presents a new method to control the injection current using a digital predictive algorithm, which allows an optimal compensation in stationary state and during variations in the load current and in the source voltage. Results obtained in simulation tests and experimentally on a laboratory prototype confirm and validate the proposed technique.

Key words: Current harmonics, reactive current, shunt active power filter, injection current control, Kalman filtering,

1. Introduction

Non-linear loads connected to the electrical grid cause voltage and current harmonics which can reduce the efficiency and capability of the transport and distribution lines due to the presence of reactive power current components.

The power system efficiency can be improved using passive filters, active filters or both solutions simultaneously: hybrid filters. Active power filters and hybrid filters are the most efficient and versatile ones, avoiding problems associated to passive solutions as resonances.

The general structure of the compensation by means of a SAPF is shown in figure 1. The SAPF is composed by an IGBT H-Bridge, a floating capacitor (Vdc) and a current link (Li). The SAPF current consumption allows the compensation of the non-desirable components of the load current instantaneously. Its controller must determine the compensation reference current, which is composed by the non-desirable load current component and a current to compensate the power converter switching losses, and ensures that the instantaneous compensation current corresponds to the reference current [1].

The injection current controller must ensure that the compensation current tracks the reference current taking into account the characteristics of the link inductor and the voltage in point of common coupling (PCC).

Different methods to control the injection current have been proposed: hysteresis [2], PI, deadbeat, adaptive [3], fuzzy, ANN but probably, the most applied one, is a PI-controller due to its simplicity. The fundamental drawback of this controller is that is not capable of track sinusoidal signals without stationary error, which generates a poor SAPF performance [4], due to this fact resonant controllers have been applied [5] to electrical drives but in the case of SAPF, with reference currents composed of diverse harmonic components, the structure of the full controller can be very complex, with a resonant control block for each harmonic component in the error signal.

This paper proposes a new injection current controller which improves the results obtained with PI controllers and simplifies the controller design. The proposed current controller takes advantage of the predictive capability of discrete Kalman filtering and has been tested in simulation and on a laboratory prototype, verifying its optimal behavior under stationary and dynamical conditions.

2. Proposed Current Controller

The controller in figure 1, after determining the compensation reference current, iC*(t), must ensure that the current through the current link, iC(t), corresponds to the compensation reference current. The reference current, iC*(t), is compared with the injection current, iC(t), and the error current, iε(t), is applied to the injection current controller which establishes the new output voltage of the voltage source converter (VSC).

The voltage must be traduced to switching states of the VSC by means of a modulator, which establishes the time in each switching state. Finally, the voltage across the current link establishes the injection current iC(t).
Using a digital controller, this control loop can be analyzed as shown in figure 2, where the effect of the analog-to-digital and digital-to-analog interfaces is introduced. The transfer functions $G_{c1}(z)$ is applied to the control of the injection current of the current controller and $G_{c2}(z)$ is employed to minimize the effect of the source voltage in the injection current controller. On the other hand $G_{m}(s)$ is the modulator transfer function, $G_{i}(s)$ is the power converter transfer function and $G_{l}(s)$ is the current link transfer function.

As consequence, the controller only can be feasible, independently of the time delays in the acquisition of the injection current, if $b=1$. Then, the application of a predictive Kalman filtering loop on the reference current with one sample in advance allows the development of this controller. Due to equation 3 $G_{c2}(z)$ only has to compensate r delays in the acquisition of the source voltage, so other Kalman filter with predictive capability can be applied to obtain this signal.

3. Simulation Results

A full SAPF has been modeled to test the proposed injection current controller. This SAPF is connected to the grid and to a non-linear load which is a full bridge diode rectifier with a RC load, $R=64 \, \Omega$ and $C=1000 \, \mu F$. The source voltage corresponds to 25 V rms at 50 Hz. The SAPF is composed of one H-bridge with IGBTs and diodes in anti-parallel, a DC capacitor $C=2200 \, \mu F$ at 160 V and a current link $L=12 \, mH$ and $R=1.6 \, \Omega$.

Figure 4 shows the obtained results in stationary state during the compensation. The injection current matches the reference signal, including the higher frequency components which correspond to the reference current peak.

![Fig. 4. a) Reference and b) compensation currents. Stationary state.](https://doi.org/10.24084/repqj03.240)

Figure 5 shows the reference current and the injection current during the charging transient of the SAPF capacitor. In this case, low frequency components in the reference signal, due to the charging process of the DC capacitor, are tracked maintaining the good performance of the proposed current controller.

4. Experimental Results

A laboratory prototype of SAPF has been developed to test the proposed current controller. The power converter of the SAPF is an H-Bridge made up of IGBTs with anti-parallel diodes IRG4PC50UD and an IR2130 control.
A new current controller for single phase shunt active power filters has been proposed. The use of a digital algorithm with predictive capability allows obtaining an optimal FIR controller. This controller simplifies the design of the present current controllers and improves their behavior.

Obtained results in simulation test and employing a laboratory prototype allows the evaluation and validation the proposed control method in stationary state and under load transients.

References

